
let scenario = seq [
 wait (propose a (level 3) (round 0) p1 [a;b]);
 (preendorse a (level 3) (round 0) __ [a;b] &&
 preendorse b (level 3) (round 0) __ [a;b]) ;
 endorse b (level 3) (round 0) __ [a;b];
 propose b (level 3) (round 1) p1 [a;b]
]

A test scenario

Detect
discrepancies

between
design and

code

✔ Declarative scenario description language
✔ Combinators for scenario steps (sequence, disjunctions, loops, parallel composition)
✔ Assertions written with the full power of OCaml
✔ Modular implementation (engine for forwarding, engine for matching, etc.)
✔ Man-In-The-Middle proxy to monitor and act on messages on P2P network
✔ Messages reorg, delay or loss, clocks drift
✔ No instrumentation required to run code (nodes)

Ç Bozman - M Iguernlala - M Laporte - M Levillain - A Mebsout - S Conchon

Mitten
Scenario-Based Consensus

Protocols Testing

Parameterizable
Man-In-The-Middle

proxy to run test scenarios
on consensus protocols

implementations

contact@functori.com
https://functori.com/mitten

https://www.youtube.com/watch?v=KLasrzyF5Rw

At level 3, round 1, node b
should re-propose payload

p1 it already endorsed at (3,0)

EXAMPLE

node whose port is 71 sees node whose
port is 73 through mitten proxy port 83

Matching exchanged messages against the
scenario and forwarding desired ones

FEATURES

https://functori.com/mitten
https://www.youtube.com/watch?v=KLasrzyF5Rw

