
Knit&Frog: Pattern matching compilation for

custom memory representations

Thäıs Baudon∗1, Gabriel Radanne2, and Laure Gonnord3

1ENS Lyon, LIP – CNRS UMR 5668 – France
2Inria, LIP – CNRS UMR 5668 – France

3Grenoble-INP/LCIS, LIP – CNRS UMR 5668 – France

Résumé

Initially present only in functional languages such as OCaml and Haskell, Algebraic Data
Types have now become pervasive in mainstream languages, providing nice data abstractions
and an elegant way to express functions though pattern-matching. Numerous approaches
have been designed to compile rich pattern matching to cleverly designed, efficient decision
trees. However, these approaches are specific to a choice of internal memory representa-
tion which must accommodate garbage-collection and polymorphism. ADTs now appear in
languages more liberal in their memory representation such as Rust. Notably, Rust is now
introducing more and more optimizations of the memory layout of Algebraic Data Types.
As memory representation and compilation are interdependent, it raises the question of pat-
tern matching compilation in the presence of non-regular, potentially customized, memory
layouts. In this article, we present Knit&Frog, a framework to compile pattern-matching for
monomorphic ADTs, parametrized by an arbitrary memory representation. We propose a
novel way to describe choices of memory representation along with a validity condition under
which we prove the correctness of our compilation scheme. The approach is implemented in
a prototype tool ribbit.

∗Intervenant

sciencesconf.org:gdr-gpl-2022:415951


